Proline dehydrogenase promotes senescence through the generation of reactive oxygen species.
نویسندگان
چکیده
Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene (PRODH) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS.
منابع مشابه
Connecting proline metabolism and signaling pathways in plant senescence
The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen sp...
متن کاملInteraction of polyamine and proline on the activity of enzymatic and non-enzymatic compounds in the peel of three Citrus species under low temperature stress
Plants activate antioxidant defense mechanisms under stress, which help maintaining the structural integrity of cell components and possibly reduces oxidative damage. Low temperature stress leads to the production of reactive oxygen species and oxidative damage to plants. In this study, the effect of putrescine and proline on reducing the production of reactive oxygen species and increasing th...
متن کاملReactive oxygen species level, mitochondrial transcription factor A gene expression and succinate dehydrogenase activity in metaphase II oocytes derived from in vitro cultured vitrified mouse ovaries
The aim of this study was to evaluate the effects of ovarian tissue vitrification and two-step in vitro culture on the metaphase II (MII) oocyte reactive oxygen species (ROS) level, mitochondrial transcription factor A (TFAM) expression and succinate dehydrogenase (SDH) activity. After collection of neonatal mouse ovaries, 45 ovaries were vitrified and the others (n = 45) were...
متن کاملReactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway.
Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous prolin...
متن کاملProline dehydrogenase: a key enzyme in controlling cellular homeostasis.
Proline dehydrogenase (ProDH), also called proline oxidase (POX), is a universal enzyme in living organisms. It catalyzes the oxidation of L-proline to delta1-pyrroline-5-carboxylate leading to the release of electrons, which can be transferred to either electron transfer systems or to molecular oxygen. ProDH is not only essential for proline catabolism but also plays key roles in providing ene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 130 8 شماره
صفحات -
تاریخ انتشار 2017